Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites.

نویسندگان

  • Zhonggang Liu
  • Heidi Forsyth
  • Neelam Khaper
  • Aicheng Chen
چکیده

Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further employed for the electroanalysis of NO using differential pulse voltammetry (DPV) and amperometric methods. The dependence of AuPt molar ratios on the electrochemical performance was investigated. Through the combination of the advantages of the high conductivity from rGO and highly electrocatalytic activity from AuPt bimetallic nanoparticles, the AuPt-rGO based NO sensor exhibited a high sensitivity of 7.35 μA μM(-1) and a low detection limit of 2.88 nM. Additionally, negligible interference from common ions or organic molecules was observed, and the AuPt-rGO modified electrode demonstrated excellent stability. Moreover, this optimized electrochemical sensor was practicable for efficiently monitoring the NO released from rat cardiac cells, which were stimulated by l-arginine (l-arg), showing that stressed cells generated over 10 times more NO than normal cells. The novel sensor developed in this study may have significant medical diagnostic applications for the prevention and monitoring of disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition...

متن کامل

Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review

This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors.  Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...

متن کامل

Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review

This paper gives a comprehensive review about the most recent progress in graphene and graphene oxide based electrochemical sensors and biosensors.  Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass product...

متن کامل

Electrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode

The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 141 13  شماره 

صفحات  -

تاریخ انتشار 2016